REACTION OF 1,5-CYCLOUNDECADIYNE AND 1,6-CYCLOUNDECADIYNE WITH CpCo(CO)2

Rolf Gleiter^a, Detlef Kratz^a, Manfred L. Ziegler^b and Bernhard Nuber^b Organisch-Chemisches^a and Anorganisch-Chemisches^b Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg (W.-Germany)

The reaction of 1,5-cycloundecadiyne with CpCo(CO)₂ leads to <u>inter</u>molecular products while 1,6cycloundecadiyne reacts in an <u>intra</u>molecular fashion.

Recently we showed that 1,6-cyclodecadiyne reacts with $CpCo(CO)_2$ mainly in an intermolecular fashion¹. To test the reactivity of other cyclic diacetylenes we prepared 1,5-cycloundecadiyne (1) and 1,6-cycloundecadiyne (2)². The results of the reaction of 1 and 2 with $CpCo(CO)_2$ are summarized in Scheme 1. In the case of 1 we find an intermolecular reaction to 3 (7%). The other possible isomer, 7,

could not be detected. As a side product (3%) we isolated a compound whose spectroscopic data

are compatible with structure 4 (see Table 1). The less strained compound 2 reacts intramolecularly to yield 5 (32%) and 6 (2.5%). Similarly 1,6-cyclododecadiyne yields 8 in 75% yield. The results summarized in Scheme 1 demonstrate a strong influence of the chain length on the reactivity. The same holds for the intermolecular formed cyclic products. The X-ray investigation on single crystals of 3 shows that the two triple bonds are separated considerably (see Figure 1)³. They are not aligned parallel to each other, so that a second dimerization to an unsymmetrical superphane

Fig.1 Structure of 3 according to an X-ray investigation. The most relevant bond(Å)lengths are;

C(6)-C(17) = 1.46; C(6)-C(16) = 1.46; C(16)-C(27) = 1.45; C(17)-C(27) = 1.44; C(9)-C(10) = 1.16; C(23)-C(24) = 1.17; C(9)-C(24) = 6.42; C(9)-C(23) = 6.75; C(10)-C(23) = 7.31; C(10)-C(24) = 6.90.

seems unlikely. Furthermore, a superphane of this type would exhibit extreme sterical crowding. Semiempirical calculations (AM1)⁴ on a model with a square planar cyclobutadiene ring without a CpCo unit reproduce the geometry of the carbon skeleton of **3** rather accurately. Our calculations (on a model) for the non-isolated intermediate **7** predict, however, a conformation which is suited for the

reaction with a further triple-bond in a [2+2+2] fashion. This would rationalize the side-product 4 and the absence of 7.

Our studies on medium sized diacetylenes^{1,5} indicate that the <u>intramolecular</u> reaction to a tricyclic CpCo-stabilized cyclobutadiene is preferred if $n \ge 3$ in both - $(CH_2)_n$ - chains. This is in line with the observation that 2 and cyclic diacetylenes of larger ring-size⁶ yield the <u>intramolecular</u> cyclobutadienes in large amounts with CpCo(CO)₂. Once n < 3 (e.g. as in 1) a cyclobutene annelated cyclobutadiene would result, a structure which has not been observed to date⁷. If the total ring size is twelve or larger the yield of the intramolecular complex is substantial⁶ while for smaller rings the bifunctionality of the diacetylene mainly leads to undefined products next to small amounts of the discussed complexes (see Scheme 1).

Table 1: Most relevant analytical data of 3-6 and 8.

3: mp. = 133° C; ¹H-NMR (300 MHz, C₆D₆): δ = 4.62 (s, 5H), 2.45 (t, ³J(H,H) = 10Hz, 2H), 2.14-2.30 (m, 8H), 1.83-2.08 (m, 10H), 1.54-1.67 (4H), 1.33-1.45 (4H), 1.33-1.45 (4H); ¹³C-NMR (50.32 MHz, C₆D₆): δ = 18.55 (CH₂), 20.33 (CH₂), 24.54 (CH₂), 24.78 (CH₂), 27.67 (CH₂), 28.50 (CH₂), 28.75 (CH₂), 77.61 (C), 79.99 (C), 81.28 (CH), 81.56 (C), 82.26 (C); MS (EI): m/z 416 (M⁺, 12.2%), 350 (M⁺-C₅H₆, 2.2), 291 (M⁺-CoC₅H₆, 3.1), 189 (Co(C₅H₅)₂⁺, 11.6), 124 (CoC₅H₅, 80), 91 (48), 59 (Co, 100); MS (CI): m/z 416 (M⁺), 417 (M⁺+H), 445 (M⁺+C₂H₅); **IR** (CDCl₃): ν [cm⁻¹] = 2924 (CH₂), 2238 (C=C), 1448, 1432, 802; **UV/VIS** (CH₂Cl₂): λ_{max} [nm] (lg ϵ) = 264 (4.35), 290 (3.23), 365 (2.8).

4: mp. = 98^oC; ¹**H-NMR** (300 MHz, C₆D₆): δ = 4.56 (s, 5H), 3.46 (m, 2H), 2.30-3.15 (m, 16H), 1.80-2.20 (m, 12H), 1.25-1.60 (12H); ¹³C-NMR (50.32 MHz, C₆D₆): δ = 18.65 (CH₂), 21.26 (CH₂), 22.39 (CH₂), 23.53 (CH₂), 24.27 (CH₂), 24.54 (CH₂), 24.81 (CH₂), 25.94 (CH₂), 25.98 (CH₂), 26.14 (CH₂), 26.55 (CH₂), 26.91 (CH₂), 27.11 (CH₂), 27.31 (CH₂), 28.14 (CH₂), 28.18 (CH₂), 28.68 (CH₂), 29.45 (CH₂), 30.08 (CH₂), 30.15 (CH₂), 31.11 (CH₂), 77.31 (C), 77.76 (C), 78.17 (C), 78.62 (C), 80.35 (CH), 82.60 (C), 83.87 (C), 136.37 (C), 136.80 (C), 138.10 (C), 138.30 (C), 139.01 (C), 139.40 (C); MS (EI): m/z 562 (M⁺, 89.7%), 355 (10.3), 278 (33.3), 255 (33.3), 189 (Co(C₅H₅)₂⁺, 25.6), 124 (CoC₅H₅, 82.1), 91 (59), 59 (Co, 38.5), 41 (100); **IR** (CDCl₃): ν [cm⁻¹] = 2918 (CH₂), 1483, 1455, 1268, 800; **UV/VIS** (n-pentane): λ_{max} [nm] (lgε) = 212 (3.51), 268 (3.31), 300 (2.09), 370 (1.05).

5: mp. = 64° C; ¹**H-NMR** (300 MHz, C₆D₆): δ = 4.59 (s, 5H), 2.25 (m, 2H), 1.62-2.12 (m, 12H); ¹³C-NMR (75.46 MHz, C₆D₆): δ = 23.78 (CH₂), 24.68 (CH₂), 26.98 (CH₂), 29.17 (CH₂), 70.18 (C), 80.69 (CH), 81.42 (C); **MS** (EI): m/z 270 (M⁺, 63%), 265 (73), 200 (70), 189 (Co(C₅H₅)₂⁺, 92), 141 (34), 124 (CoC₅H₅, 85), 91 (30), 59 (Co, 100); **IR** (KBr): ν [cm⁻¹] = 2969 (CH₂), 2830 (CH₂), 1445, 1435, 801; **UV/VIS** (n-pentane): λ max[nm] (lg ϵ) = 205 (3.08), 267 (3.13), 300 (2.73), 375 (1.80).

6: ¹H-NMR (CDCl₃, 300 MHz): δ = 4.73 (s, 5H), 1.92-2.56 (m, 14H); ¹³C-NMR (75.47 MHz, CDCl₃): δ = 21.98 (CH₂), 22.27 (CH₂), 22.75 (CH₂), 23.29 (CH₂), 24.33 (CH₂), 24.50 (CH₂), 28.09 (CH₂), 82.99 (CH), 85.32 (C=C), 85.80 (C=C), 86.69 (C=C), 98.04 (C=C), 149.91 (C=0); **MS** (EI): m/z 298

 $(M^+, 41\%), 269 (M^+-COH, 10), 265 (28), 200 (34), 189 (Co(C_5H_5)_2^+, 49), 141 (35), 124 (CoC_5H_5, 88), 115 (33), 91 (24), 59 (Co, 100), 44 (13);$ **IR** $(CDCl_3): <math>\nu$ [cm⁻¹] = 2954 (CH_2), 2204, 1559 (C=0), 1548 (C=0), 1432, 1258, 818; **UV/VIS** (CH_2Cl_2): λ_{max} [nm] (lg ϵ) = 222 (4.04), 284 (4.22), 364 (3.30), 415 (3.01). **8**: mp. = 91°C; ¹H-NMR (300 MHz, C₆D₆): δ = 4.68 (s, 5H), 1.84-2.14 (m, 4H), 1.82-1.92 (m, 4H), 1.49-1.80 (m, 8H); ¹³C-NMR (75.46 MHz, C₆D₆): δ = 27.19 (CH₂), 28.83 (CH₂), 29.98 (CH₂), 31.00 (CH₂), 31.17 (CH₂), 74.86 (C), 79.72 (CH), 81.83 (C); **GC-MS** (EI): m/z 284 (M⁺, 69.7%), 255 (M⁺-C₂H₅, 12.8), 189 (Co(C₅H₅)₂⁺, 100), 124 (CoC₅H₅, 31.4), 91 (13.2), 59 (Co, 32.6); **IR** (CH₂Cl₂): ν [cm⁻¹] = 2916 (CH₂), 2836 (CH₂), 1443 (CH₂), 804; **UV/VIS** (n-pentane): λ_{max} [nm] (lg ϵ) = 205 (4.07), 265 (4.09), 295 (2.87), 380 (2.5).

Acknowledgement: We are grateful to the Deutsche Forschungsgemeinschaft (SFB 247), the Volkswagenstiftung, the Fonds der Chemischen Industrie, the BASF Aktiengesellschaft and the State Baden-Württemberg for financial support. D.K. is grateful to the Studienstiftung des Deutschen Volkes for a stipend.

References:

- ¹ R. Gleiter, M. Karcher, M.L. Ziegler, B. Nuber, Tetrahedron Lett. <u>28</u>, 195 (1987).
- ² R. Gleiter, D. Kratz, V. Schehlmann, Tetrahedron Lett. <u>29</u>, 813 (1988).
- ³ Unit cell constants for 3: a = 9.799(6) Å, b = 13,815(8) Å, c = 16.535(8) Å; V = 2238.39 Å³, Z = 4. Space group $D_2^{4}P2_{1,2,1,2}$ (19). Data were collected on a SYNTEX R3 diffractometer using a crystal of dimensions 0.4x0.5x0.7 mm². Ω -scan (3^o < 2e < 60^o) MO_{Ka} radiation; 2336 reflexions of which 2285 were judged to be independent (I > 2.50 σ (I)). All crystallographic calculations used the SHELXTL program package 5.1 (December 1985). Empirical absorption correction (6 reflections, 5.0 < 2e < 30^o). Relative range of transmissions factors 0.92 1.00 (μ = 7.72 cm⁻¹). Least-squares refinement with ($\psi = 1/\sigma^2$ (F)). The structure was solved by direct methods (SOLVE, SHELXTL). The hydrogen atoms were located by the option HFIX of the SHELXTL program; R = 0.061, R_w=0.054. Complete structural data have been submitted to the **Cambridge University Crystallographic Center**.
- ⁴ M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am.Chem.Soc. <u>107</u>, 3902 (1985).
- ⁵ R. Gleiter, M. Karcher, D. Kratz, S. Rittinger, V. Schehlmann in H. Werner, G. Erker (Eds) **Organometallics in Organic Synthesis 2**, Springer Verlag, Berlin, Heidelberg 1989, <u>109</u>.
- ⁶ R.B. King, A. Efraty, J. Am.Chem.Soc. <u>94</u>, 3021 (1972); A. Efraty, Chem.Rev. <u>77</u>, 69 (1977).
- 7 E.R.F. Gesing, K.P.C. Vollhardt, J.Organomet.Chem. 217, 105 (1981).

(Received in Germany 8 August 1990)